top of page

METALES NO FÉRRICOS

  • Foto del escritor: alejandrolztecno
    alejandrolztecno
  • 6 mar 2016
  • 5 Min. de lectura

Comprende todos los metales a excepción del hierro. Su utilización no es tan masivas como los productos férreos (hierro, acero y fundición) pero tienen una una gran importancia en la fabricación de gran cantidad de productos, por propiedades como, en ocasiones: el bajo peso específico, la resistencia a la oxidación condiciones ambientales normales, la fácil manipulación y mecanizado. Las aleaciones de productos no ferrosos tienen gran cantidad de aplicaciones: monedas (fabricadas con aleaciones de cobre, níquel y aluminio) filamentos de bombillas (de wolframio) material de soldadura de componentes electrónicos (estaño-plomo) recubrimientos (cromo, níquel, cinc) etcétera.


COBRE


El cobre, cuyo símbolo es Cu, es el elemento químico de número atómico 29. Se trata de un metal de transición de color rojizo y brillo metálico que, junto con la plata y el oro, forma parte de la llamada familia del cobre, se caracteriza por ser uno de los mejores conductores de electricidad (el segundo después de la plata). Gracias a su alta conductividad eléctrica, ductilidad y maleabilidad, se ha convertido en el material más utilizado para fabricar cables eléctricos y otros componentes eléctricos y electrónicos.


Aleaciones:


Latón (Cu-Zn): El latón, también conocido como cuzin, es una aleación de cobre, cinc (Zn) y, en menor proporción, otros metales.


Bronce (Cu-Sn): Las aleaciones en cuya composición predominan el cobre y el estaño (Sn) se conocen con el nombre de bronce y son conocidas desde la antigüedad
Alpaca (Cu-Ni-Zn):Las alpacas o platas alemanas son aleaciones de cobre, níquel (Ni) y zinc (Zn), en una proporción de 50-70 % de cobre, 13-25 % de níquel, y 13-25 % de zinc.
ALUMINIO

El aluminio es un elemento químico, de símbolo Al y número atómico 13. Se trata de un metal no ferromagnético. Es el tercer elemento más común encontrado en lacorteza terrestre. Los compuestos de aluminio forman el 8 % de la corteza de la tierra y se encuentran presentes en la mayoría de las rocas, de la vegetación y de los animales.1 En estado natural se encuentra en muchos silicatos (feldespatos, plagioclasas y micas). Como metal se extrae únicamente del mineral conocido con el nombre de bauxita, por transformación primero en alúmina mediante el proceso Bayer y a continuación en aluminio metálico mediante electrólisis.
Aleaciones:

El aluminio puro es un material blando y poco resistente a la tracción. Para mejorar estas propiedades mecánicas se alea con otros elementos, principalmente magnesio,manganeso, cobre, zinc y silicio, a veces se añade también titanio y cromo. La primera aleación de aluminio, el popular duraluminio fue descubierta casualmente por el metalúrgico alemán Alfred Wilm y su principal aleante era el cobre. Actualmente las aleaciones de aluminio se clasifican en series, desde la 1000 a la 8000, según el siguiente cuadro.
TITANIO
El titanio es un elemento químico de símbolo Ti y número atómico 22. Se trata de un metal de transición de color gris plata. Comparado con el acero, aleación con la que compite en aplicaciones técnicas, es mucho más ligero (4,5/7,8). Tiene alta resistencia a la corrosión y gran resistencia mecánica, pero es mucho más costoso que aquél, lo cual limita sus usos industriales.
Aleaciones:

Comercial y técnicamente existen muchas aleaciones de titanio. Las aleaciones más conocidas son las siguientes:


Ti grado 2, tiene la siguiente composición química: TiFe(0,25-0,30) Es conocido como titanio comercial puro. Tiene una resistencia a la tracción de 345 MPa, un límite elástico de 275 MPa, una ductilidad del 20% una dureza de 82 HRB, se puede soldar y una resistencia eléctrica de 0,56 (μΩm). Sus principales aplicaciones son campos donde se requiere resistencia a la corrosión y conformabilidad como las tuberías, intercambiadores de calor, etc.


Ti grado 5, conocido como Ti6Al4V, tiene un porcentaje del 6% de aluminio y un 4% de vanadio. Es la aleación de titanio más utilizada, sobre todo, en el campo de la aeronáutica, en el de la biomedicina o la estomatología. Tiene una resistencia a la tracción de 896 MPa, un límite elástico de 827 MPa, una ductilidad del 10% una dureza de 33 HRB una soldabilidad muy buena y una resistividad eléctrica de 1,67 (μΩm). Sus aplicaciones son donde se requiera alta resistencia mecánica y altas temperaturas como en ( tornillería y piezas forjadas)


Ti grado 19, tiene la siguiente composición química Ti3Al8V6Cr4Zr4Mo (Beta-C) Tiene una resistencia a la tracción de 793 MPa, un límite elástico de 759 MPa una ductilidad de 15% una dureza de 45 HRB una soldabilidad regular y una resistividad de 1,55 (μΩm). Sus aplicaciones son donde se requiera alta resistencia a la corrosión y a la temperatura ((Aplicaciones marinas y motores de aviones)


Ti6246 Tiene la siguiente composición química: Ti6Al2Sn4Zr6Mo, Tiene una resistencia a la tracción de 1172 Mpa, un límite elástico de 1103 Mpa una ductilidad del 10% una dureza de 39 HRB una soldabilidad limitada y una resistividad eléctrica de 2 (μΩm) Sus aplicaciones son donde se requiera alta resistencia mecánica obtenida por temple.




NÍQUEL
El níquel es un elemento químico de número atómico 28 y su símbolo es Ni, situado en el grupo 10 de la tabla periódica de los elementos.
Aleaciones
Níquel y cobre, Níquel y hierro, Hierro Níquel y cromo, Níque cromo molibdeno y hierro.
ZINC
El cinc o zinc1 (del alemán Zink) es un elemento químico esencial de número atómico 30 y símbolo Zn, situado en el grupo 12 de la tabla periódica de los elementos.
Aleaciones

Las aleaciones más empleadas son las de aluminio (3,5-4,5%, Zamak; 11-13%, Zn-Al-Cu-Mg; 22%, Prestal, aleación que presenta superplasticidad) y cobre (alrededor del 1%) que mejoran las características mecánicas del cinc y su aptitud al moldeo.

Es componente minoritario en aleaciones diversas, principalmente de cobre como latones (3 a 45% de cinc), alpacas (Cu-Ni-Zn) y bronces (Cu-Sn) de moldeo.

PLOMO
El plomo es un elemento químico de la tabla periódica, cuyo símbolo es Pb (del latín plumbum) y su número atómico es 82 según la tabla actual, ya que no formaba parte en la tabla de Dmitri Mendeléyev. Este químico no lo reconocía como un elemento metálico común por su gran elasticidad molecular. Cabe destacar que la elasticidad de este elemento depende de la temperatura ambiente, la cual distiende sus átomos, o los extiende.
Aleaciones

Para balas y perdigones


Plomo 80 partes, arsénico 2 partes, se vierte el metal fundido desde gran altura, en torres especiales, sobre un baño de poca altura, en el que se produce una gran corriente de aire.


Para moldes de letras y figuras


Una buena aleación para vaciar o moldear letras y figuras, así como pequeños objetos de bronce, hierro, o yeso, se obtiene fundiendo 70 partes de plomo con 15 de antimonio y 15 de bismuto


Metal magnolia


40 partes de plomo, 7 ½ partes de antimonio, 2 ½ partes de estaño, 1/8 parte de bismuto, 1/8 de aluminio, y ¼ de grafito. Se emplea como metal antifricción, y toma su nombre de la marca de fábrica, que es una flor de magnolia.


MAGNESIO


El magnesio es el elemento químico de símbolo Mg y número atómico 12. Su masa atómica es de 24,305 u. Es el séptimo elemento en abundancia constituyendo del orden del 2 % de la corteza terrestre y el tercero más abundante disuelto en el agua de mar. El ion magnesio es esencial para todas las células vivas. El metal puro no se encuentra en la naturaleza. Una vez producido a partir de las sales de magnesio, este metal alcalino-térreo es utilizado como un elemento de aleación.

Aleaciones

Otros métodos usados para uniones de aleaciones de magnesio son remachado y adhesivos. Fijaciones mecánicas pueden ser usadas en magnesio, manteniendo las concentraciones de tensiones en un mínimo seguro. Para el remachado se utilizan métodos convencionales, pero sólo los remaches dúctiles de aluminio deberían usarse, preferiblemente aleación 5056-H32, para minimizar la posibilidad de falla por corrosión galvánica. Las juntas por pegado se han transformado en una técnica muy utilizada, las características de fatiga son mejores que en las otras uniones, y las probabilidades de falla debido a concentración de tensiones son minimizadas. Este tipo de junta puede utilizar menores espesores pudiendo lograrse estructuras más livianas; también forma una capa que rellena el espacio entre las mismas formando una aislación entre cualquier tipo de materiales disímiles.


















 
 
 

Comentários


Síguenos
  • Facebook B&W
  • Twitter B&W
  • Google+ B&W
  • YouTube B&W
Posts Recientes
Búsqueda por Tags

© 2023 por Tendencias A-Z. Creado con Wix.com

bottom of page